Парадокс береговой линии

Материал из Энциклопедия научных парадоксов
Перейти к: навигация, поиск

Парадокс береговой линии заключается в том, что чем точнее мы измеряем длину/площадь/объём чего-либо, тем больше получается значение. К примеру, измеряя береговую линию Великобритании отрезками по 100 км, получаем, что её длина составляет примерно 2 800 км. Если использовать отрезки по 50 км, то длина равна ~= 3 400 км, что на 600 км больше.

Объяснение[править]

Дело в том, что измеряемые структуры фрактальны. При изменении масштаба будут видны ещё неровности. Измеряя линейкой по 1000 км, мы можем не учитывать длину береговой линии на мелких полуостровах и заливах. Взяв линейку в 1 км, мы их учтём, но не учтём валунов, береговых овражков. Взяв метровую линейку, мы учтём и их, но не учтём лежащие аккурат на берегу камешки. Эту проблему решит линейка в 1 см. Но она не учтёт длину береговой линии по песчинкам. Взяв 10-микрометровую линейку, мы учтём и песчинки. Но мы не учтём все неровности на самих песчинках. И так далее. Причём молекулы тоже неровные. А форму атомов определить пока что невозможно. А протоны и нейтроны состоят из 3 кварков. А те, к слову, могут, вероятно, также быть неровными…

Иными словами, длина побережья Великобритании бесконечна. И границ между государствами тоже. А на обслуживание 1 км границы тратится 1 млн руб/год…