Куча песка
Материал целиком и полностью слизан с этого сайта. |
Суть софизма[править]
Никакое количество песка не является кучей.
«Предыстория и доказательство»[править]
Встретились два приятеля, стали разговаривать. Вдруг взгляд одного из них упал на кучу песка.
— Видишь кучу песка? — спросил он. — А на самом деле ее нет.
— Почему? — удивился его приятель.
— Очень просто, — ответил он. —- Давай рассудим: одна песчинка, очевидно, не образует кучи песка. Если n песчинок не могут образовать кучи песка, то и после прибавления еще одной песчинки они по-прежнему не могут образовать кучи. Следовательно, никакое число песчинок не образует кучи, то есть кучи песка нет.
Объяснение[править]
Это «парадокс кучи». В приведенном рассуждении второй приятель воспользовался методом полной математической индукции. Однако этот метод нельзя применять в рассуждениях, подобных этой задаче, ибо в них не определено само понятие «кучи песчинок».
Википедия[править]
Парадокс кучи («Куча», «Сорит») — логический парадокс, сформулированный Евбулидом из Милета (IV век до н.э.), связанный с неопределенностью предиката «быть кучей».
Формулировка парадокса основана на базисной предпосылке, согласно которой одно зёрнышко не образует кучи, и индуктивной предпосылке, по которой добавление одного зёрнышка к совокупности, кучей не являющейся, несущественно для образования кучи. При принятии этих предпосылок никакая совокупность из сколь угодно большого количества зёрен не будет образовывать кучи, что противоречит представлению о существовании кучи из зёрен.
Известно множество вариаций в формулировке парадокса. Кроме позитивной («если к одному зерну добавлять по зёрнышку, то в какой момент образуется куча?»), встречается и негативная формулировка: «если удалять из кучи в 1 млн зёрен по одному зёрнышку, с какого момента она перестаёт быть кучей?»[1]. Среди множества переложений самому Евбулиду принадлежит негативный вариант парадокса, известный как парадокс лысого: «если волосы с головы выпадают по одному, с какого момента человек становится лысым?». Упоминание парадокса в той или иной форме нередко встречается в художественных произведениях, например, в мультфильме «Как лечить удава» из цикла «38 попугаев» Слонёнок задаётся вопросом: «Сколько орехов нужно собрать, чтобы получилась целая куча?» — после чего персонажи в шуточной форме обсуждают парадокс кучи и связанные с ним сложности.
Парадокс используется как одно из обоснований рассмотрения нечёткой логики[2].